Lorentz Ricci solitons on 3-dimensional Lie groups

نویسنده

  • Kensuke Onda
چکیده

The three-dimensional Heisenberg group H3 has three left-invariant Lorentz metrics g1 , g2 and g3 as in [R92] . They are not isometric each other. In this paper, we characterize the left-invariant Lorentzian metric g1 as a Lorentz Ricci soliton. This Ricci soliton g1 is a shrinking non-gradient Ricci soliton. Likewise we prove that the isometry group of flat Euclid plane E(2) has Lorentz Ricci solitons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

Ricci Yang-mills Solitons on Nilpotent Lie Groups

The purpose of this paper is to introduce the Ricci Yang-Mills soliton equations on nilpotent Lie groups. In the 2-step nilpotent setting, we show that these equations are strictly weaker than the Ricci soliton equations. Using techniques from Geometric Invariant Theory, we develop a procedure to build many different kinds of Ricci Yang-Mills solitons. We finish this note by producing examples ...

متن کامل

Ricci Flow on Three-dimensional, Unimodular Metric Lie Algebras

We give a global picture of the Ricci flow on the space of three-dimensional, unimodular, nonabelian metric Lie algebras considered up to isometry and scaling. The Ricci flow is viewed as a two-dimensional dynamical system for the evolution of structure constants of the metric Lie algebra with respect to an evolving orthonormal frame. This system is amenable to direct phase plane analysis, and ...

متن کامل

The Ricci Bracket Flow for Solvable Lie Groups

The Ricci bracket flow is a geometric evolution on Lie algebras which is related to the Ricci flow on the corresponding Lie group. For nilpotent Lie groups, these two flows are equivalent. In the solvable case, it is not known whether they are equivalent. We examine a family of solvable Lie algebras and identify various elements of that family which are solitons under the Ricci bracket flow. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009